Growth of heat trace coefficients for locally symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L spectral theory and heat dynamics of locally symmetric spaces

In this paper we first derive several results concerning the L spectrum of arithmetic locally symmetric spaces whose Q-rank equals one. In particular, we show that there is an open subset of C consisting of eigenvalues of the L Laplacian if p < 2 and that corresponding eigenfunctions are given by certain Eisenstein series. On the other hand, if p > 2 there is at most a discrete set of real eige...

متن کامل

The Minakshisundaram-pleijel Coefficients for the Vector Valued Heat Kernel on Compact Locally Symmetric Spaces of Negattve Curvature

We use harmonic analysis on semisimple Lie groups to determine the Minakshisundaram-Pleijel asymptotic expansion for the trace of the heat kernel on natural vector bundles over compact, locally symmetric spaces of strictly negative curvature. Introduction. Let G be a connected, real semisimple Lie group of rank one with finite center. Let G = K ■ A ■ N be an Iwasawa decomposition of G and let M...

متن کامل

Holomorphic Torsion for Hermitian Locally Symmetric Spaces

Contents 1 Holomorphic torsion 5 2 The trace of the heat kernel 8 2.

متن کامل

Geometric zeta-functions of locally symmetric spaces

The theory of geometric zeta functions for locally symmetric spaces as initialized by Selberg and continued by numerous mathematicians is generalized to the case of higher rank spaces. We show analytic continuation, describe the divisor in terms of tangential cohomology and in terms of group cohomology which generalizes the Patterson conjecture. We also extend the range of zeta functions in con...

متن کامل

Equivariant Torsion of Locally Symmetric Spaces

In this paper we express the equivariant torsion of an Hermitian locally symmetric space in terms of geometrical data from closed geodesics and their Poincaré maps. For a Hermitian locally symmetric space Y and a holomorphic isometry g we define a zeta function Z(s) for <(s) 0, whose definition involves closed geodesics and their Poincaré maps. We show that Z extends meromorphically to the enti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2012

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.4751279